文浩资源

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 31|回复: 0

高中数学数列知识点总结

[复制链接]

0

主题

0

帖子

-2万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
-20126
发表于 2019-9-13 23:46:11 | 显示全部楼层 |阅读模式
篇一:高中数学数列知识点总结(经典)

数列基础知识点和方法归纳

1. 等差数列的定义与性质

定义:an?1?an?d(d为常数),an?a1??n?1?d 等差中项:x,A,y成等差数列?2A?x?y 前n项和Sn?

?a1?an?n?na

2

1?

n?n?1?

d 2

性质:?an?是等差数列

(1)若m?n?p?q,则am?an?ap?aq;

(2)数列?a2n?1??,a2n??,a2n?1?仍为等差数列,Sn,S2n?Sn,S3n?S2n……仍为等差数列,公差为n2d;

(3)若三个成等差数列,可设为a?d,a,a?d (4)若an,bn是等差数列,且前n项和分别为Sn,Tn,则

amS2m?1

?

bmT2m?1

(5)?an?为等差数列?Sn?an2?bn(a,b为常数,是关于n的常数项为0的二次函数)

Sn的最值可求二次函数Sn?an2?bn的最值;或者求出?an?中的正、负分界

项,

?an?0

即:当a1?0,d?0,解不等式组?可得Sn达到最大值时的n值.

a?0?n?1?a?0

当a1?0,d?0,由?n可得Sn达到最小值时的n值.

?an?1?0(6)项数为偶数2n的等差数列?an?

,有

S2n?n(a1?a2n)?n(a2?a2n?1)???n(an?an?1)(an,an?1为中间两项)

S偶?S奇?nd,

S奇S偶

?

an

. an?1

,有

(7)项数为奇数2n?1的等差数列?an?

1

S2n?1?(2n?1)an(an为中间项), S奇?SS奇偶?an,

S?

nn?1

. 偶

2. 等比数列的定义与性质

定义:

an?1

?q(q为常数,q?0),an?1an?a1qn

. 等比中项:x、G、y成等比数列?G2?

xy,或G?

?na1(q?1)前n项和:S?

n???

a1?1?qn?(要注意!)

?1?q

(q?1)性质:?an?是等比数列

(1)若m?n?p?q,则am·an?ap·aq

(2)Sn,S2n?Sn,S3n?S2n……仍为等比数列,公比为qn. 注意:由Sn求an时应注意什么?

n?1时,a1?S1;

n?2时,an?Sn?Sn?1.

3.求数列通项公式的常用方法 (1)求差(商)法

如:数列?a12?11

n?,a122a2?……?2

nan?2n?5,求an

解 n?1时,1

2a1?2?1?5,∴a1?14 n?2时,12a?11

122a2?……?2

n?1an?1?2n?1?5 ①—②得:1n?1

?14(n?1)2nan?2,∴an?2,∴an???

2n?1(n?2) [练习]数列?a5

n?满足Sn?Sn?1?3

an?1,a1?4,求an

注意到aSn?1

n?1?Sn?1?Sn,代入得

S?4又S1?4,∴?Sn?是等比数列,n



2





Sn?4n

n?2时,an?Sn?Sn?1?……?3·4n?1

(2)叠乘法

an 如:数列?an?中,a1?3n?1?,求an

ann?1



3aa1a2a312n?1

,∴n?又a1?3,∴an?……n?……

n. a1na1a2an?123n

(3)等差型递推公式

由an?an?1?f(n),a1?a0,求an,用迭加法

?

a3?a2?f(3)??

n?2时,?两边相加得an?a1?f(2)?f(3)?……?f(n)

…………?an?an?1?f(n)??

a2?a1?f(2)

∴an?a0?f(2)?f(3)?……?f(n) [练习]数列?an?中,a1?1,an?3(4)等比型递推公式

n?1

?an?1?n?2?,求an(

an?

1n

3?1??2)

an?can?1?d(c、d为常数,c?0,c?1,d?0)

可转化为等比数列,设an?x?c?an?1?x??an?can?1??c?1?x 令(c?1)x?d,∴x?

ddd??

,c为公比的等比数列 ,∴?an??是首项为a1?

c?1c?1c?1??

∴an?

dd?n?1d?n?1d??

,∴ ??a1?·ca?a?c?n??1?

c?1?c?1?c?1?c?1?

(5)倒数法 如:a1?1,an?1?

2an

,求an an?2

由已知得:

a?2111111?n??,∴?? an?12an2anan?1an2

?1?11111

·??n?1?, ∴??为等差数列,?1,公差为,∴?1??n?1?

2a1an22?an?

3

∴an?( 附:

2n?1

公式法、利用

an?

?

S1(n?1)

Sn?Sn?1(n?2)、累加法、累乘法.构造等差或等比

an?1?pan?q或an?1?pan?f(n)、待定系数法、对数变换法、迭代法、数学归纳法、换元法

)

4. 求数列前n项和的常用方法

(1) 裂项法

把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:?an?是公差为d的等差数列,求?

1

k?1akak?1

n

解:由

n

111?11?

??????d?0?

ak·ak?1akak?dd?akak?1?

n

?111?11?1??11??11?1??

?????????……??∴???????? ??

ak?1?d??a1a2??a2a3?k?1akak?1k?1d?ak?anan?1??

?

1?11?

??? d?a1an?1?

[练习]求和:1?

111??……? 1?21?2?31?2?3?……?n

1

an?……?……,Sn?2?

n?1

(2)错位相减法

若?an?为等差数列,?bn?为等比数列,求数列?anbn?(差比数列)前n项和,可由

Sn?qSn,求Sn,其中q为?bn?的公比.

如:Sn?1?2x?3x2?4x3?……?nxn?1



x·Sn?x?2x2?3x3?4x4?……??n?1?xn?1?nxn ①—②?1?x?Sn?1?x?x2?……?xn?1?nxn

4



x?1时,Sn

1?x?nx???

n

n

?1?x?

2

1?x

,x?1时,Sn?1?2?3?……?n?

n?n?1?

2

(3)倒序相加法

把数列的各项顺序倒写,再与原来顺序的数列相加.

Sn?a1?a2?……?an?1?an?

?相加2Sn??a1?an???a2?an?1??…??a1?an?…

Sn?an?an?1?……?a2?a1?

x2

[练习]已知f(x)?,则 2

1?x

?1?

f(1)?f(2)?f???f(3)?

?2??1?

f???f(4)??3?

2

?1?

f????4?

?1???x2x21x??1??由f(x)?f???????12222

x1?x1?x1?x???1?

1????x?

?

∴原式?f(1)??f(2)?

?(附:

?1???

f?????f(3)??2????1???

f?????f(4)??3???1?1??1

f?????1?1?1?3

2?4??2

a.用倒序相加法求数列的前n项和

如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写

与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 b.用公式法求数列的前n项和

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 c.用裂项相消法求数列的前n项和

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 d.用错位相减法求数列的前n项和

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。 e.用迭加法求数列的前n项和

迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条

5

篇二:高中数学数列知识点总结

五、数列

一、数列定义:

数列是按照一定次序排列的一列数,那么它就必定有开头的数,有相继的第二个数,有第三个数,……,于是数列中的每一个数都对应一个序号;反过来,每一个序号也都对应于数列中的一个数。因此,数列就是定义在正整数集N*(或它的有限子集{1,2,3,?,n})上的函数f(n),当自变量从1开始由小到大依次取正整数时,相对应的一列函数值为 通常用an代替f(n),于是数列的一般形式常记为a1,a2,?或简记为{an},f(1),f(2),?;

其中an表示数列{an}的通项。

注意:(1){an}与an是不同的概念,{an}表示数列a1,a2,?,而an表示的是数列的第n项;

(2)数列的项与它的项数是不同的概念,数列的项是指这个数列中的某一个确定的数,

它是一个函数值;而项数是指这个数在数列中的位置序号,它是自变量的值。 S1(n?1)?

(3)anSnan??

S?S(n?2)n?1?n

*

如:已知{an}的Sn满足lg(Sn?1)?n(n?N),求an。

二、等差数列、等比数列的性质:

如:(1)在等差数列{an}中Sn?10,S2n?30,则S3n?

(2)在等比数列{an}中Sn?10,S2n?30,则S3n? 另外,等差数列中还有以下性质须注意:

(1)等差数列{an}中,若an?m,am?n(m?n),则am?n? (2)等差数列{an}中,若Sn?m,Sm?n(m?n),则Sm?n?

(3)等差数列{an}中,若Sn?Sm(m?n),则am?1?am?2???an?;Sm?n? ; (4)若SP?Sq,则n?时,Sn最大。 (5)若{an}与{bn}均为等差数列,且前n项和分别为Sn与Tn,



ambm

?S______T______



ambn

??

S______T______

(6)项数为偶数2n的等差数列{an},有S2n?

间的两项)

S偶?S奇?n(a1?a2n)

2

?

n2

(an?an?1)(an与an?1为中

S奇S偶

?

项数为奇数2n?1的等差数列{an},有S2n?1?(2n?1)an(an为中间项)

S奇?S偶?S奇S偶

?S奇?S偶?

等比数列中还有以下性质须注意:

(1)若{an}是等比数列,则{?an}(??0),{|an|}也是等比数列,公比分别

(2)若{an}是等比数列,则{三、判定方法:

(1)等差数列的判定方法:

1an

,{an}也是等比数列,公比分别 ; ;

2

①定义法:an?1?an?d或an?an?1?d(n?2)(d为常数)?{an}是等差数列 ②中项公式法:2an?1?an?an?2?{an}是等差数列

③通项公式法:an?pn?q(p,q为常数)?{an}是等差数列 ④前n项和公式法:Sn?An2?Bn(A,B为常数)?{an}是等差数列 注意:①②是用来证明{an}(2)等比数列的判定方法:

①定义法:

an?1an

?q或

anan?1

?d(n?2)(q是不为零的常数)?{an}是等比数列

②中项公式法:an?1?an?an?2(anan?1an?2?0)?{an}是等差数列

n

③通项公式法:an?cq(c,q是不为零常数)?{an}是等差数列

2

2

④前n项和公式法:Sn?kq?k(k?

a1q?1

是常数)?{an}是等差数列

注意:①②是用来证明{an}四、数列的通项求法: (1)观察法:如:(1)0.2,0.22,0.222,……(2)21,203,2005,20007,…… (2)化归法:通过对递推公式的变换转化成等差数列或等比数列。

①递推式为an?1?an?d及an?1?qan(d,q为常数):直接运用等差(比)数列。 ②递推式为an?1?an?f(n):迭加法 如:已知{an}中a1?

12

,an?1?an?

14n?1

2

,求an

③递推式为an?1?f(n)an:迭乘法 如:已知{an}中a1?2,an?1?

n?1n

an,求an

④递推式为an?1?pan?q(p,q为常数):

?an?1?pan?q

构造法:Ⅰ、由?相减得(an?2?an?1)?p(an?1?an),则

a?pa?qn?1?n?2

{an?1?an}为等比数列。

Ⅱ、设(an?1?t)?p(an?t),得到pt?t?q,t?

为等比数列。

如:已知a1?1,an?1?2an?5,求an ⑤递推式为an?1?pan?qn(p,q为常数):

两边同时除去qn?1得再用④法解决。 如:已知{an}中,a1?

56

qp?1

,则{an?

qp?1

an?1q

n?1

?

pq

?

anq

n

?

1q

,令bn?

anq

n

,转化为bn?1?

pq

bn?

1q



,an?1?

1

1n?1

an?(),求an 32

⑥递推式为an?2?pan?1?qan(p,q为常数):

将an?2?pan?1?qan变形为an?2?tan?1?s(an?1?tan),可得出?

s,t,于是{an?1?tan}是公比为s的等比数列。

?s?t?p?st??q

解出

如:已知{an}中,a1?1,a2?2,an?2?

S1,n?1?

(3)公式法:运用an??

?Sn?Sn?1,n?2

23

an?1?

13

an,求an

2

①已知Sn?3n?5n?1,求an;②已知{an}中, Sn?3?2an,求an;

③已知{an}中,a1?1,an?五、数列的求和法:

2Sn

2

2Sn?1

(n?2),求an

(1)公式法:

①等差(比)数列前n项和公式:②1?2?3???n?;

③1?2?3???n?(2)倒序相加(乘)法:

012n

如:①求和:Sn?Cn?2Cn?3Cn???(n?1)Cn;

2222

n(n?1)(2n?1)

6

;④1?2?3???n?[

3333

n(n?1)

2

]

2

篇三:高中数学数列知识点总结(经典)

数列基础知识点和方法归纳

1.数列的通项

求数列通项公式的常用方法:

(1)观察与归纳法:先观察哪些因素随项数n的变化而变化,哪些因素不变:分析符号、数字、字母与

项数n在变化过程中的联系,初步归纳公式。

(2)公式法:等差数列与等比数列。

?S1,(n?1)(3)利用Sn与an的关系求an:an?? S?S,(n?2)n?1?n

2. 等差数列的定义与性质

定义:an?1?an?d(d为常数),通项:an?a1??n?1?d?am?(n?m)d

等差中项:x,A,y成等差数列?2A?x?y

前n项和Sna1?an?n???na2n?n?1?d 1?2

性质:?an?是等差数列

(1)若m?n?p?q,则am?an?ap?aq;

(2)数列?a2n?1??,a2n??,a2n?1?仍为等差数列,

Sn,S2n?Sn,S3n?S2n……仍为等差数列,公差为n2d;

(3)若三个成等差数列,可设为a?d,a,a?d

Sn的最值可求二次函数Sn?an2?bn的最值;或者求出?an?中的正、负分界项,

?an?0即:当a1?0,d?0,解不等式组?可得Sn达到最大值时的n值. ?an?1?0

?an?0当a1?0,d?0,由?可得Sn达到最小值时的n值. a?0?n?1

.

(3){kan}也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列.

(5)a1?a2???am,am?1?am?1???a2m,a2m?1?a2m?1???a3m?仍成等差数列.

(8)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和;

3. 等比数列的定义与性质

定义:an?1?q(q为常数,q?0),an?a1qn?1?amqn?m .an

等比中项:x、G、y成等比数列?G2?

xy,或G?

前n项和:

?na1 (q?1)?na1 (q?1)??Sn??a1?anqa1(1?qn)??a1n(要注意!) a1?q? (q?1)? (q?1)?1?q?1?q1?q1?q??

性质:?an?是等比数列

(1)若m?n?p?q,则am·an?ap·aq

(2)Sn,S2n?Sn,S3n?S2n……仍为等比数列,公比为qn.

注意:由Sn求an时应注意什么?

n?1时,a1?S1;

n?2时,an?Sn?Sn?1.

(3){|an|}、{kan}成等比数列;{an}、{bn}成等比数列?{anbn}成等比数列.

(4)两等比数列对应项积(商)组成的新数列仍成等比数列.

(5)a1?a2???am,ak?ak?1???ak?m?1,?成等比数列.

(6)数列?a2n?1??,a2n??,a2n?1?仍为等比数列,

(7)p?q?m?n?bp?bq?bm?bn;2m?p?q?bm2?bp?bqSm?n?Sm?qmSn?Sn?qnSm.

(8)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。.(9)等差数列与等比数列的联系:各项都不为零的常数列既是等差数列又是等比数列

4. 求数列前n项和的常用方法

(1) 裂项法

把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.

如:?an?是公差为d的等差数列,求?1

k?1akak?1n

解:由

n111?11???????d?0? ak·ak?1akak?dd?akak?1?n?111?11?1??11??11?1??????∴????????????……????? aadaadaaaaaak?1kk?1k?1k?1?2?3?n?1???k?2?n??1

?1?11???? d?a1an?1?

[练习]求和:1?111??……? 1?21?2?31?2?3?……?n

1an?……?……,Sn?2? n?1

(2)错位相减法

若?an?为等差数列,?bn?为等比数列,求数列?anbn?(差比数列)前n项和,可由Sn?qSn,求Sn,其中q为?bn?的公比.

如:Sn?1?2x?3x2?4x3?……?nxn?1

① x·Sn?x?2x2?3x3?4x4?……??n?1?xn?1?nxn

①—②?1?x?Sn?1?x?x2?……?xn?1?nxn

x?1时,Sn ② ?1?x??nx?nn

?1?x?21?x,x?1时,Sn?1?2?3?……?n?n?n?1? 2

(3)倒序相加法

把数列的各项顺序倒写,再与原来顺序的数列相加.

Sn?a1?a2?……?an?1?an??相加2Sn??a1?an???a2?an?1??…??a1?an?… Sn?an?an?1?……?a2?a1?


《高中数学数列知识点总结》出自:百味书屋
链接地址:http://www.850500.com/news/54385.html
转载请保留,谢谢!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

代学代考网络课程远程培训

QQ|手机版|文浩资源 ( 湘ICP备17017632号 )文浩资源

GMT+8, 2024-11-12 19:34 , Processed in 0.325278 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表