|
篇一:大学数学课后习题答案
习题1
1. (1)不能(2)不能(3)能(4)不能
2. (1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合.
(2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的.
(3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合.
3. ?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.
4. (1){0,1,2,3,4} (2){3,4} (3){(?1,?1),(0,0),(1,1)}
5. (1){x|x?2?3,x?Z} (2){x|x?x?12?0} (3){(x,y)|y?x,y?x}
6. (1){1,3} (2){1,2,3,5} (3)? (4){1,2,3,4,5,6} (5){2} (6)?
(7){4,5,6} (8){1,3,4,5,6} (9){1,2,3,4,5,6} (10){4,6}
7. 23
A?A?B?B?A?(A?B)?B
?((A?A)?(A?B))?B
?(??(A?B))?B
?(A?B)?B
?(A?B)?(B?B)
?(A?B)?U
?A?B
8. (1)(?5,5) (2)(?2,0) (3)(??,?3]?[1,??) (4)(1,2]
(5)[4,??) (6)(??,4)
9. (1)A?B?{1};A?B?[0,3];A?B?[0,1).
(2)A?B?[2,4];A?B?[?1,4];A?B?[?1,2).
10. (1)(,)(2)(,2)?(2,).
11. (1)不是.定义域不同 (2)不是.定义域不同 (3)不是.定义域不同
(4)是.在公共的定义域[?1,1]上,y??x??x?y??x2
12. (1)(??,?2)?(?2,2)?(2,??) (2)(??,?1]?[1,??) (3)(?1,1] 35223252
(4)(??,??)(5)(?2,2)(6)[1,5]
(7)(?
2?2k?,?
2?2(k?1)?),k?0,?1,?2,? (8)(?2,?1)?(?1,1)?(1,??)
(9)(??,?2)?(3,??) (10)[2,4]
13(1)f(0)?02?3?0?5??5;f(1)?12?3?1?5??1;
f(?1)?(?1)2?3?(?1)?5??7;f(?x)?(?x)2?3?(?x)?5?x2?3x?5; f()?()?3?1
x1x2113?5?2??5. xxx
14. f(x)?f(x?1?1)?(x?1)2?2(x?1)?3?x2?4;
f(x?1)?(x?1)2?4?x2?2x?3. sin(?)??2,f(0)?0?1?1,f(?)???1??. 15. f(?)?2222??2?
x2x2x2?116. ?x?D?(??,??),有f(x)?1???1??1??2. 2221?x1?x1?x
17. (1)单调递减 (2)(??,2]上单调递增;[2,??)上单调递减 (3)(??,1]单调递减;[1,??)上单调递增 (4)单调递增 (5)(??
2?k?,?
2?k?)(k?0,?1,?2,?)上
单调递增; (6)单调递增
18. (1)偶函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)非奇非偶函数
(6)偶函数 (7)非奇非偶函数 (8)奇函数 (9)偶函数 (10)奇函数
19. (1)对定义域内的任意x,因为F(?x)?
函数;
(2)对定义域内的任意x,因G(?x)?
所以G(x)是偶函数.
20. (1)? (2)2? (3)? (4)2?
21. (1)因为?x?(??,??),有f(x?2)?f(x)?f(2)成立,令x??1,则有1[f(?x)?f(x)]?F(x),所以F(x)是偶211[f(?x)?f(x)]??[f(x)?f(?x)]??G(x),22f(1)?f(?1)?f(2),又因为f(x)是(??,??)内的奇函数,所以f(?1)??f(1),所以f(2)?2f(1)?2a,又f(5)?f(3)?f(2)?(f(1)?f(2))?f(2)?f(1)?2f(2),所以
f(5)?5a.
(2)因为f(x)是以2为周期的周期函数,所以f(x?2)?f(x),又已知
f(x?2)?f(x)?f(2),所以f(2)?0,由(1)知f(2)?2a,所以a?0.
222. (1)y?arcsinu,u?1?x (2)y?,u?lnv,v?x
w,2(3)y?u,u?2?v,v?cosx (4)y?eu,u?arctanv,v?
w?1?x
23. (1)y?1?x1bx? (2)y?ex?1 (3)y?x?2 (4)y?(x??1) 1?xkk
24. (1)是 (2)是 (3)是 (4)不是
习题2
1. (1) 0 (2) 1 (3) 0 (4) 0
2.(1)3 (2)2 (3)0 (4) ?? (5) ?
3.两个无穷小的商是不一定是无穷小,例如:
1limn??nn21??? n2limnn??
4. 根据定义证明: 1(1)y?xcos当x?0时为无穷小; x
证明:???0,????,当x??,xcos
(2)y?1?x当x??1时为无穷大. x1?x?? x
证明:?M?0,???M?1,当x??,
5. 求下列极限:
(1)1(2)0
6. 计算下列极限:
(1)0(2)1 2x?111????1?M?1?1?M xxx
(3)2(4)1 2
7. 计算下列极限:
(1)4 (2)?
1(3)2(4) 3
1(5)?(6) 4
(7)-1(8)
?x?1,x?0?x?0,讨论函数在点x?0时的极限情况? 8. 设f(x)??0,
?x?1,x?0?
解:lim-f(x)??1,lim-f(x)?1,f(0)?0,所以f(x)在x?0不存在极限。 x?0x?0
x2?ax?b?5,求a,b 9. 已知limx?11?x
x2?ax?b?5得解:由已知可知:a?b?1?0,得到a??b?1,代入limx?11?x
x2?(b?1)x?b(x?b)(x?1)lim?lim?1?b?5,得b?6,a??7 x?1x?11?x1?x
10. 计算下列极限:
lim?x?cosx?lim?x?0x12x2(1)x?0?2
tanx?sinx1?cosxx21?lim?lim?(2)lim x?0x?0x2?cosxx?02x2?cosx2x3
tan2x22x2
?lim2?2 (3)lim2x?0x?0xx
(4)limx?02??cosx1?cosxsinx2?lim?lim?x?08 sin2x(2??cosx)sin2xx?022?2sinxcosx
xx?1?11??x?2??(5)lim??lim1????x??x?1x?????x?1??e
1?x?(6)lim??? x??x?1e??
1??3?x??(7)lim???lim?1??x??2?xx??x?2????
?(8)lim?1?x?0?x??2?x?1xxx?(x?2)?21? e?e ?1
2
?x2???e(9)lim?x???x2?1???x
(10)limsinx?sin1cosx?lim?cos1 x?1x?1x?11
1?cosxx2
?lim?0(11)limx?0x?02sinxsinx
lim(1?x)tan?x
2(12)x?1?lim(1?x)x?1?12?lim?xx?1x? cos?sin222sin?x
sin3x?2sinx3? (13)lim2?54?sinxx?2
(14) lim
x?cotxx??
22??1
111????存在极限。 1?21?221?2n
111111?????????提示: 2n2n1?21?2221?2211. 证明:数列xn?
11??112. 求极限limn?2?2???2?。 n??n??n?2?n?n???
提示:n?n11?n?n?1 ?n??????2?2222n??n?n??n?n??n??n?2?
2n
13. 求lim。 n??n!
2n2? 提示:n足够大时n!n
篇二:大学数学习题八答案
习题八
1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x,y)|x≠0};
(2) {(x,y)|1≤x2+y2<4};
(3) {(x,y)|y<x2};
(4) {(x,y)|(x-1)2+y2≤1}∪{(x,y)|(x+1)2+y2≤1}.
解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|x=0}. (2)既非开集又非闭集,有界集, 聚点集:{(x,y)|1≤x2+y2≤4}, 边界:{(x,y)|x2
+y2
=1}∪{(x,y)| x2
+y2
=4}. (3)开集、区域、无界集, 聚点集:{(x,y)|y≤x2
}, 边界:{(x,y)| y=x2}.
(4)闭集、有界集,聚点集即是其本身,
边界:{(x,y)|(x-1)2+y2=1}∪{(x,y)|(x+1)2+y2=1}. 2. 已知f(x,y)=x2+y2-xytan
xy
,试求f(tx,ty).
解:f(tx,ty)?(tx)2?(ty)2?tx?tytan
tx2
ty
?tf(x,y).
3. 已知f(u,v,w)?uw?wu?v,试求f(x?y,x?y,xy). 解:f(x+y, x-y, xy) =(x+y)xy+(xy)x+y+x-y =(x+y)xy+(xy)2x. 4. 求下列各函数的定义域:
(1)z?ln(y2
?2x?
1);
(2)z?
?
(3)z?
ln(1?x?
y)
(4)u?
(5)z?
(6)z?ln(y?x)?
(7)u?arccos
解:(1)D?{(x,y)|y2
?2x?1?0}.
(2)D?{(x,y)|x?y?0,x?y?0}.
(3)D?{(x,y)|4x?y?0,1?x?y?0,x?y?0}.
2
2
2
2
2
(4)D?{(x,y,z)|x?0,y?0,z?0}. (5)D?{(x,y)|x?0,y?0,x2
?y}. (6)D?{(x,y)|y?x?0,x?0,x2
?y2
?1}. (7)D?{(x,y,z)|x2
?y2
?0,x2
?y2
?z2
?0}.5. 求下列各极限:
y
(1)lim
ln(x?e)x?1 y?0
(3)lim
x?0xy
y?0
(5)lim
sinxyx?0x
; y?0
解:(1)原式
?ln2.(2)原式=+∞. (3)原式
=lim
1x?0??
y?0
4
.
(4)原式
=lim
x?0xy?1?1
?2.
y?0
(5)原式=lim
sinxyx?0xy
?y?1?0?0.
y?0
1
(x2?y2)
2
2(6)原式=lim
y2
x?02
2
2
x?0y?0
(x?y)e
x?y
2
?lim
x?2e
(x2
?y2
)
?0.
y?0
6. 判断下列函数在原点O(0,0)处是否连续: ?sin(x3?2
2
(1)z??
y3)
?y2
,x?y?0,?x2
??
0,x2
?y2
?0;
(2)lim
1x?0x2
?
y
2
;
y?0
(4)lim
x?0
y?0
2
2
(6)lim
1?cos(x?y)x?0(x2
?y2
.y?0
)e
x2
?y
2
?sin(x3?y3)
,?
(2)z??x3?y3
?0,?
x?y?0,x?y?0;
3
3
33
22
?xy
,?222
(3) (2)z??xy?(x?y)
?0,?
x?y?0,x?y?0;
2
2
22
解:(1)由于0?
sin(x?y)x?y
2
2
33
?
x?yx?y
3
3
332
2
?
sin(x?y)x?y
3
3
33
?(x?y)
sin(x?y)x?y
3
3
33
又lim(x?y)?0,且lim
x?0
y?0
sin(x?y)x?y
3
3
x?0y?0
?lim
sinuu
u?0
?1,
故limz?0?z(0,0).
x?0y?0
故函数在O(0,0)处连续. (2)limz?lim
x?0y?0
sinuu
u?0
?1?z(0,0)?0
故O(0,0)是z的间断点.
(3)若P(x,y) 沿直线y=x趋于(0,0)点,则
limz?lim
x?x
2
22
2
x?0y?x?0
x?0
x?x?0
?1,
若点P(x,y) 沿直线y=-x趋于(0,0)点,则
limz?lim
x(?x)
2
22
2
2
x?0
y??x?0
x?0
x?(?x)?4x
?lim
x
2
2
x?0
x?4
?0
故limz不存在.故函数z在O(0,0)处不连续.
x?0y?0
7. 指出下列函数在向外间断: (1) f(x,y)=
x?y
3
23
x?y
; (2) f(x,y)=
y?2xy?2x
2
2
2
;
(3) f(x,y)=ln(1-x2-y2);
?x?x2?2ey,
(4)f(x,y)=?y
?
0,?
y?0,y?0.
解:(1)因为当y=-x时,函数无定义,所以函数在直线y=-x上的所有点处间断,而在其余
点处均连续.
(2)因为当y2=2x时,函数无定义,所以函数在抛物线y2=2x上的所有点处间断.而在其余各点处均连续.
(3)因为当x2+y2=1时,函数无定义,所以函数在圆周x2+y2=1上所有点处间断.而在其余各点
处均连续.
(4)因为点P(x,y)沿直线y=x趋于O(0,0)时.
limf(x,y)?lim
xx
2
x?0x?0
e
?1
??.
y?x?0
故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数: 22
(1)z=x2
y+
xy
2
; (2)s=
u?vuv;
(3)z=x
ln;
(4)z=lntanxy
;
(5)z=(1+xy)y; (6)u=zxy;
y
(7)u=arctan(x-y)z
; (8)u?xz.
解:(1)
?z?2xy?
1?z2
2x?x
y
2
,
?y
?x?
y
3
.
(2)s?u?
v
?s1uv
u
?u
?v
?
vu
2
,
?s?v
??v
2
?
1u
.
2
(3)?z?x
?lnx2x?
122
2
ln(x?y)?
x
x2
?y
2
,?z?y
?xy?
xy2x2
?y
2
.
(4)?z?
1
?x
?sec
2
xtan
xy?1y?2ycsc2xy
, y
?zx2xx?y
?
1tan
x?sec
2
y
?(?
xy
2
)??y
2
csc
2y
.
y
(5)两边取对数得lnz?yln(1?xy)
故
?z?x
?(1?xy)y
??yln(1?xy)??y
2
x?(1?xy)y
?
1?xy
?y2(1?xy)
y?1
.
?z
y
?y?(1?xy)??yln(1?xy)??y?y?(1?xy)?
ln(1?xy)?yx??1?xy??
?(1?xy)y?
?xy??ln(1?xy)?
1?xy?.?(6)
?u?x?lnz?z
xy
?y
?uxy?1
?y
?lnz?z
xy
?x
?u?z
?xy?z
(7)?uz(x?y)
z?1?x?
11?[(x?y)z]2
?z(x?y)
z?1
?
1?(x?y)
2z
.
?uz(x?y)
z?1
(?1)
?y)
z?1?y?
?1?[(x?y)z]
2
??
z(x1?(x?y)
2z
.
?uz?y)z
?z
?
(x?y)ln(x?y)ln(x?y)1?[(x?y)z
]
2
?
(x1?(x?y)
2z
.
y
(8)
?uz
?1
?x?
yz
x
. ?uy
?y?xzlnx?
1?1y
z
z
xzlnx.
?u
y
y
?xzlnx????y?
yz?z?z2??
??z2xlnx.29.已知u?
xy
2
?ux?y
,求证:x
?x
?y
?u?y
?3u.
2
证明:
?u(x?y)?x2y
2
222xy3
?x?
2xy(x?y)2
?
xy?(x?y)
2
.
?ux2
y2
?2yx3
由对称性知?y
?(x?y)2
.
x
?u?ux2
y2
于是 (x?y)?x
?y?y
?
3(x?y)
2
?3u.
??1?110.设z?e??
?xy??
,求证:x
2
?zz?x
?y
2
??y
?2z.
??1
1?????1?1证明: ?z?e
?xy??
??1??
1
?????xy??
?x
????x2????x2e,
?
由z关于x,y的对称性得
篇三:大学数学课后习题答案-习题1-习题4
习题1
1. (1)不能(2)不能(3)能(4)不能
2. (1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合.
(2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的.
(3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合.
3. ?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.
4. (1){0,1,2,3,4} (2){3,4} (3){(?1,?1),(0,0),(1,1)}
5. (1){x|x?2?3,x?Z} (2){x|x?x?12?0} (3){(x,y)|y?x,y?x}
6. (1){1,3} (2){1,2,3,5} (3)? (4){1,2,3,4,5,6} (5){2} (6)?
(7){4,5,6} (8){1,3,4,5,6} (9){1,2,3,4,5,6} (10){4,6}
7. 23
A?A?B?B?A?(A?B)?B
?((A?A)?(A?B))?B
?(??(A?B))?B
?(A?B)?B
?(A?B)?(B?B)
?(A?B)?U
?A?B
8. (1)(?5,5) (2)(?2,0) (3)(??,?3]?[1,??) (4)(1,2]
(5)[4,??) (6)(??,4)
9. (1)A?B?{1};A?B?[0,3];A?B?[0,1).
(2)A?B?[2,4];A?B?[?1,4];A?B?[?1,2).
10. (1)(,)(2)(,2)?(2,).
11. (1)不是.定义域不同 (2)不是.定义域不同 (3)不是.定义域不同
(4)是.在公共的定义域[?1,1]上,y??x??x?y??x2
12. (1)(??,?2)?(?2,2)?(2,??) (2)(??,?1]?[1,??) (3)(?1,1] 35223252
(4)(??,??)(5)(?2,2)(6)[1,5]
(7)(?
2?2k?,?
2?2(k?1)?),k?0,?1,?2,? (8)(?2,?1)?(?1,1)?(1,??)
(9)(??,?2)?(3,??) (10)[2,4]
13(1)f(0)?02?3?0?5??5;f(1)?12?3?1?5??1;
f(?1)?(?1)2?3?(?1)?5??7;f(?x)?(?x)2?3?(?x)?5?x2?3x?5; f()?()?3?1
x1x2113?5?2??5. xxx
14. f(x)?f(x?1?1)?(x?1)2?2(x?1)?3?x2?4;
f(x?1)?(x?1)2?4?x2?2x?3. sin(?)??2,f(0)?0?1?1,f(?)???1??. 15. f(?)?2222??2?
x2x2x2?116. ?x?D?(??,??),有f(x)?1???1??1??2. 2221?x1?x1?x
17. (1)单调递减 (2)(??,2]上单调递增;[2,??)上单调递减 (3)(??,1]单调递减;[1,??)上单调递增 (4)单调递增 (5)(??
2?k?,?
2?k?)(k?0,?1,?2,?)上
单调递增; (6)单调递增
18. (1)偶函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)非奇非偶函数
(6)偶函数 (7)非奇非偶函数 (8)奇函数 (9)偶函数 (10)奇函数
19. (1)对定义域内的任意x,因为F(?x)?
函数;
(2)对定义域内的任意x,因G(?x)?
所以G(x)是偶函数.
20. (1)? (2)2? (3)? (4)2?
21. (1)因为?x?(??,??),有f(x?2)?f(x)?f(2)成立,令x??1,则有1[f(?x)?f(x)]?F(x),所以F(x)是偶211[f(?x)?f(x)]??[f(x)?f(?x)]??G(x),22f(1)?f(?1)?f(2),又因为f(x)是(??,??)内的奇函数,所以f(?1)??f(1),所以f(2)?2f(1)?2a,又f(5)?f(3)?f(2)?(f(1)?f(2))?f(2)?f(1)?2f(2),所以
f(5)?5a.
(2)因为f(x)是以2为周期的周期函数,所以f(x?2)?f(x),又已知
f(x?2)?f(x)?f(2),所以f(2)?0,由(1)知f(2)?2a,所以a?0.
222. (1)y?arcsinu,u?1?x (2)y?,u?lnv,v?x
w,2(3)y?u,u?2?v,v?cosx (4)y?eu,u?arctanv,v?
w?1?x
23. (1)y?1?x1bx? (2)y?ex?1 (3)y?x?2 (4)y?(x??1) 1?xkk
24. (1)是 (2)是 (3)是 (4)不是
习题2
1. (1) 0 (2) 1 (3) 0 (4) 0
2.(1)3 (2)2 (3)0 (4) ?? (5) ?
3.两个无穷小的商是不一定是无穷小,例如:
1limn??nn21??? n2limnn??
4. 根据定义证明: 1(1)y?xcos当x?0时为无穷小; x
证明:???0,????,当x??,xcos
(2)y?1?x当x??1时为无穷大. x1?x?? x
证明:?M?0,???M?1,当x??,
5. 求下列极限:
(1)1(2)0
6. 计算下列极限:
(1)0(2)1 2x?111????1?M?1?1?M xxx
(3)2(4)1 2
7. 计算下列极限:
(1)4 (2)?
1(3)2(4) 3
1(5)?(6) 4
(7)-1(8)
?x?1,x?0?x?0,讨论函数在点x?0时的极限情况? 8. 设f(x)??0,
?x?1,x?0?
解:lim-f(x)??1,lim-f(x)?1,f(0)?0,所以f(x)在x?0不存在极限。 x?0x?0
x2?ax?b?5,求a,b 9. 已知limx?11?x
x2?ax?b?5得解:由已知可知:a?b?1?0,得到a??b?1,代入limx?11?x
x2?(b?1)x?b(x?b)(x?1)lim?lim?1?b?5,得b?6,a??7 x?1x?11?x1?x
10. 计算下列极限:
lim?x?cosx?lim?x?0x12x2(1)x?0?2
tanx?sinx1?cosxx21?lim?lim?(2)lim x?0x?0x2?cosxx?02x2?cosx2x3
tan2x22x2
?lim2?2 (3)lim2x?0x?0xx
(4)limx?02??cosx1?cosxsinx2?lim?lim?x?08 sin2x(2??cosx)sin2xx?022?2sinxcosx
xx?1?11??x?2??(5)lim??lim1????x??x?1x?????x?1??e
1?x?(6)lim??? x??x?1e??
1??3?x??(7)lim???lim?1??x??2?xx??x?2????
?(8)lim?1?x?0?x??2?x?1xxx?(x?2)?21? e?e ?1
2
?x2???e(9)lim?x???x2?1???x
(10)limsinx?sin1cosx?lim?cos1 x?1x?1x?11
1?cosxx2
?lim?0(11)limx?0x?02sinxsinx
lim(1?x)tan?x
2(12)x?1?lim(1?x)x?1?12?lim?xx?1x? cos?sin222sin?x
sin3x?2sinx3? (13)lim2?54?sinxx?2
(14) lim
x?cotxx??
22??1
111????存在极限。 1?21?221?2n
111111?????????提示:单调且有上界, 2n2n1?21?2221?2211. 证明:数列xn?
11??112. 求极限limn?2?2???2?。 n??n??n?2?n?n???
提示:n?n11?n?n?1 ?n??????2?2222n??n?n??n?n??n??n?2?
2n
13. 求lim。 n??n!
2n2? 提示:n足够大时n!n
《大学数学习题一答案》出自:百味书屋
链接地址:http://www.850500.com/news/5812.html
转载请保留,谢谢! |
|