文浩资源

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 73|回复: 0

等腰三角形的性质(二) -数学教案

[复制链接]

0

主题

0

帖子

-2万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
-20126
发表于 2019-9-13 23:46:11 | 显示全部楼层 |阅读模式
等腰三角形的性质(二)
  一、教学目的

  使学生熟练地掌握等腰三角形的性质.

  二、教学重点、难点

  重点:等腰三角形性质的应用.

  难点:添加合适的辅助线.

  三、教学过程

  复习提问

  1 .等腰三角形的性质.

  2.等腰三角形的底角一定是_角?

  3.等腰三角形的底角为20°,求它的顶角度数.

  引入新课

  等腰三角形一腰上的中线把它的周长分为15cm和6cm的两部分,求这三角形各边的长.

  学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:


  在图1中,AB=AC,D为AB的中点(即AD=DB),设 AD=xcm,则 AB=AC=2cm(中线定义).由AC+AD=15cm,得

  2x+x=15.

  解得 x=5,……

  本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.

  新课

  例2 已知:图2,在△ABC中,AB=AC,点D在AC上,且 BD=BC=AD.求△ABC各角的度数.

  分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.


  例3 已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.

  通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.


  小结

  1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).

  2.对于等腰三角形的”三线合一”性要灵活运用.

  练习:略

  作业:略

  思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.

  四、教学注意问题

  1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.

  2.要防止“三线合一”性在应用中出现的错误.



等腰三角形的性质(二)


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

代学代考网络课程远程培训

QQ|手机版|文浩资源 ( 湘ICP备17017632号 )文浩资源

GMT+8, 2025-1-3 08:16 , Processed in 0.265500 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表