文浩资源

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 12|回复: 0

二项式定理教学反思3篇

[复制链接]

0

主题

0

帖子

-2万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
-20126
发表于 2019-9-13 23:46:11 | 显示全部楼层 |阅读模式
篇一:二项式定理教学反思(周红)

《二项式定理》教学反思

回首《二项式定理》教学设计准备的过程,颇有先抑后扬之感,更觉教学是一件用心才能做好的事。现将自己的教学设计理念反思总结如下。

一、 带问题进课堂

大多数的职高生从小到大在数学的道路上倍受煎熬。如果教师在教学上走常规的学科路线——从概念到例练,是无法引起学生的共鸣的。只有颇具悬念的项目“预告”才能吸引他们的眼球,激发求知欲。基于此学情分析,在课的开始,我先抛出了一系列精心设计的问题:今天星期五,8天后星期几?82天后星期几?810天后星期几?当学生回答8天后是星期六时,我适时引导:为什么是星期六?因为7天为一个星期!8=7+1;

2222那么8天后星期几?类似地8?(7?1)?7?2?7?1,被7除

210余1,故8天后星期六!8天后星期几的问题转化为寻找

展开式被7除余几。问题直指课题:寻找二项展开式!激励学生在成功的喜悦中继续探究的兴趣,带着问题进入《二项式定理》的课堂。

二、 以生活为情境

导入游戏:准备2个盒子,每个盒子中各放一个球a和一个球b。动态显示球进盒的过程,使学生直观明了题意。实验:从每个盒子中各取一球,结果有几类不同的情况?“几类”二字是我斟酌后由“几种”改过来的,这样就把学生有意识地带入预设

的分类计数原理。

学生的结果可能是散乱的,作为教师就要告诉学生一个研究问题的知识:必须遵循一定的规律!以取b的个数为规律,分为三类:aa(0个b),ba(1个b),bb(2个b),依次分析。第一类aa即

20先取一个a再取一个a,按分步计数原理得到ab。动态显示从

2盒中各取一a的过程,只有一种情况,以取b的个数为规律相当于从2个b中取0个b,即C2,得到第一类aa分析后的结果020C2ab;第二类ba取一个b一个a即a1b1。动态显示从2盒中0取一a一b的过程,有二种情况,以取b的个数为规律相当于从2个b中取1个b,即C2,得到第二类ba分析后的结果C2ab;

202同理可得到第三类分析后的结果C2ab。 1111

以生活中简单的取球游戏为情境,激发了学生思维的兴奋点,使学生全身心融入游戏,实现游戏中学习的目标。课堂动起来了,学生的思维活起来了,为游戏与数学并轨创造了良好的契机。

三、 教师启发引导

在初稿对取球游戏的分析中,第二类一a一b的情况,我直

111C接给出2ab,没有动画也没有从2个b中取1个b的文字显示。试课后我询问学生的掌握情况,学生直接提出这块内容不明白。我意识到自己以为简单的知识,却可能给学生设置了一道不能逾越的屏障,使学生产生畏难情绪,遂马上进行了以上的修改。

如果把一堂课比喻为一篇悬疑剧,作为“导演”的老师就要

做到诱生深入,引导学生一步步接近“案情的真相”。在这个过程中教师的引导要时刻切合学生“最近发展区”的教学规律,使学生跳一跳就能得到下一步结果,学生才能饶有兴趣地走至真相大白。

三类取球结果转化为数学算式后,寻求三者的关系势在必得。教师启发引导:分类如何计数?得到020111202C2ab?C2ab?C2ab。而实验的准备又可分为二步,进而得到(a?b)?(a?b)?(a?b),准备与结果的关系?为什么相等? 教师的导引步步深入。“(a?b)?(a?b)展开时从每个a+b中各取一项”相当于实验中“二盒中各取一球”!游戏与数学达到高度统一,实现了生活问题数学化的实至名归:

020111202(a?b)2?C2ab?C2ab?C2ab。 2

四、 学生自主探究

教师只能是课堂的引路人,学生才是主体。这是每个教师都知道的新的教学理念,但真正要贯穿在每堂课上却需要深思熟虑的教学设计。得到(a?b)展开式后,我让学生先大声地念一遍,初步认识二项展开式的规律。图片中加一盒,问题转为各放一a一b的3盒中各取一球。仍按取b的个数的规律,请一组同学逐

030121212303个报出四类结果:C3ab,C3ab,C3ab,C3ab,分析准备与结 2

果得到(a?b)的展开式。 3

(a二组游戏后,我漫不经心地提出了一个数学问题: ? b ) 4的

展开式!再请一组同学逐个报出展开式中每项,学生在不自不觉

中固化了二项展开式的规律。问题直指二项式定理:

? ?PPT中牛顿的话“没有大胆的猜想,就不能有伟(a? b)n

大的发明和发现!”激励着每个同学,略一思索后,全班同学齐声逐项给出……

我请全班同学一起鼓掌肯定自己,因为每个同学通过自主探究发现了二项式定理,堪与牛顿齐名。只要开动智慧的头脑,发现权永远在自己手中。

五、 思维自能跃迁

整个教学设计在逻辑上层层递进,从直观的认识到思维的迁移,可表示如下: 56(7?1)?? 思考拓展(7?1)??

102问题提出(7?1)??游戏导入(a?b)??

回归

问题

3(a?b)?? 适应性例练游戏深入

(1?x)n??

(1?x)3?? 数学问题a?b)4??

n 定理问题(a?b)??

六、 带自信出课堂

学习的最大动力来自兴趣,学习的最大障碍源自畏惧与厌

恶。虽说失败乃成功之母,但对饱受数学失败的职高生而言,成功更是成功之母。如果说职高生的数学之路犹如历经风吹浪打的汪洋迷途之舟,那么自信恰如浓雾中的灯塔,必能引导其走向胜利的彼岸。在《二项式定理》的教学中,我看到了学生的求知若渴,看到了同学鼓掌后获得成功喜悦的羞涩,看到了遭遇失败后急于纠正的心情,更发现了学生走出课堂后的自信满满。下午游安吉竹博园时,带领我们的导游竟然就是我授课班级中的一员,当我问起课后感受时,学生充分认可了我的这种教学风格,觉得在快乐中学到了东西,感觉很好。学生的自信又带给教师信心,鼓舞我在教学中继续创新探索之路。

在职高中倡导一种理念,文化课为专业课服务。如果能找到二者的共振点引起学生的共鸣固然很好。但数学作为一切科学的基础,有很多知识点与专业课无法直接衔接。那么通过数学课中的自主合作探究学习,使职高生学会学习发展能力,这才是文化课学习的终极目标,为此我将不懈努力。

篇二:二项式定理教学反思2

教学设计(续页)第 1页共2页康乐一中教导处制

教学设计(续页)第 2页共2页康乐一中教导处制

篇三:二项式定理教学反思

《二项式定理》教学反思

汾口中学 叶轶群

《二项式定理》这节内容我采用以知识点 “问题串”的形式引导学生自主探究的教学方法,在循序渐进中以小问题带动大问题,环环相扣,将知识点落实。而学生在自主讨论中,初步认识二项式定理是初中多项式乘法的继续,初步掌握展开式的规律,充分而有效地训练了学生的思维。

整节课在学生讨论探究中进行,通过一连串层层递进的问题,引导学生掌握展开式形成的规律,比如:(问题1:请在多项式中圈出能得到(a+b)4展开式中的项a4 b0的单项式a:(a+b)4 =(a+b)(a+b)(a+b) (a+b)--------- 问题2:请在多项式中用不同颜色的笔标出得到(a+b)4展开式中的项a3 b的单项式a和b

(a+b)4 =(a+b)(a+b)(a+b) (a+b)

(a+b)4 =(a+b)(a+b)(a+b) (a+b)

(a+b)4 =(a+b)(a+b)(a+b) (a+b)

(a+b)4 =(a+b)(a+b)(a+b) (a+b)------------ 问题3:请你用组合的观点来探究(a+b)4 =(a+b)(a+b)(a+b) (a+b)展开式中的项a2 b2的系数) 以上三个问题由浅入深,由简单到复杂,引导学生体验(a+b)4展开式中的特殊项得来的过程,通过学生自己用笔动手圈注和问题“你是如何做到标注时不重复无遗漏的?”的引导,让学生自己体验的到这些特殊的项需要两个步骤:先取b再取a,进而可以轻而易举的把对特殊项的探究的方法转移到计数原理上来。然后马上引

导学生完成问题4:类比以上探究项a4b0和a3b 及a2b2构成规律的方法, 请你写出 (a+b)4 二项展开式的每一项(把展开式按照a的降幂,b的升幂进行排列)(a+b)4 = ____ 。

在这个过程中非常具有挑战性问题的引入能使学生产生新奇感,激发了学生的学习兴趣和积极性.进一步把这一研究方法推广到展开式的每一项,从而得到(a+b)4二项展开式,又把这一问题往前推进了一步,引导学生找出展开式的通项,进而推广到一般情形。

教学中我特别注重运用通项意识,凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。但也有意外出现,对于二项式定理的逆运用,上课过程中重视不够,以为学生在推导展开式的同时也能够推导它的逆公式,所以在上课过程中一笔带过,导致作业中的问题比较多,基于此,在另一个班级的教学中,我决定把这个知识点跟展开式的推导融为一体来落实知识点。

本节课的亮点:

1、从“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,带给学生积极的情感体验和无尽的思考.数学思想、方法和数学文化得到了较好的体现.

2、课堂小结顺其自然地引导学生把握知识之间的内在本质联系,引导学生用扩展、深化等方式提出新问题,并用问题链引向课外或后续课程。

3、掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。教材的探求过程将归纳推理与演绎推理

有机结合起来,教学过程中,学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发他们发现一般性问题的解决方法

4、本节课教学,我采用“问题――探究”的教学模式,以“问题链”组织课堂教学,让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

本节课不足之处:

1、我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课。

2、本节课教学过程中还不够生动有趣。正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。


《二项式定理教学反思3篇》出自:百味书屋
链接地址:http://www.850500.com/news/67038.html
转载请保留,谢谢!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

代学代考网络课程远程培训

QQ|手机版|文浩资源 ( 湘ICP备17017632号 )文浩资源

GMT+8, 2025-1-9 20:22 , Processed in 0.251917 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表