|
篇一:对数函数及其性质
对数函数及其性质(说课稿) 2.2对数函数及其性质 各位老师,大家好!今天我说课的内容是人教版必修(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明. 一、教材分析 1、教材的地位和作用 函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识. 2、教学目标的确定及依据 结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标: (1) 知识与技能:进一步理解对数函数的意义,掌握对数函数的图像与性质,初步利用对数函数的图像与性质来解决简单的问题。
(2) 过程与方法:经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。 (3) 情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。 3、教学重点与难点 重点:对数函数的意义、图像与性质. 难点:对数函数性质中对于在 与 两种情况函数值的不同变化. 二、教法分析 本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,采用“从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。
三、学法分析 本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)类比学习:与指数函数类比学习对数函数的图像与性质. (2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索, 归纳得出对数函数的图像与性质. 四、教辅手段 以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方法进行教学。 五、教学过程 根据新课标我将本节课分为下列五个环节:创设情境,引入新课;探究新知,加深理解 ;讲解例题,强化应用;归纳小结,巩固双基;布置作业,提高升华。 (一)创设情境,引入新课 本节课我是从在指数函数一节曾经做过的一道习题入手的。这样以旧代新逐层递近,不仅使学生易懂而且还体现了指对函数间的密切关系。我的引题是这样的: 引题:一个细胞由一个分裂成两个,两个分裂成四个??依此类推, (1)求这样的一个细胞分裂的次数x与细胞个数y之间的函数关系式。 (2)256个细胞是这个细胞经过几次分裂得到的?那么要得到1万,10万?个第一问学生很容易得出是指数函数:y=2x。再看第二问,通过思考学生分析出这是个已知细胞个数求分裂次数的问题即:已知y求x的问题,即:x=log2y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了方便学生理解,可以借助指数函数图像加以解释。得出x=log2y是一个函数,但它又和我们平时所见过的函数形式上不一样,我们习惯上用x来表示自变量,y来表示函数,所以可将它改写成y=log2x,这样的函数称为对数函数。这便引出了本节课的课题。 这样设计不仅学生容易接受而且虽然在过程中没有用反函数的概念,但却体现了求指数函数反函数的过程,这为后面学习反函数的概念做了铺垫。由于有了之前学习指数函数的基础,学生很容易就可归纳总结出:对数函数的一般形式:y=logax(a>0且a≠1),并求出定义域(0,+∞)。由于对数函数是形式定义,所以让学生记住这个形式是由为重要的,可以让学生观察解析式的特点并可归纳总结出三条:1、对数符号前系数为1;2、底数是不为0的正常数;
3、真数是一个自变量x的形式。为了加深学生的记忆,我这里安排了一道辨析题:判断下列函数是否为对数函数: 这样学生就对对数函数的概念有了更准确的认知与理解。 (二)
探究新知,加强理解 得到了对数函数的解析式,学生自然而然就会想到该研究它的图像了。我的想法是这样的:一方面描点法画图是学生需要熟练掌握的一类重要的画图方法,而且学生对自己画出的图像和归纳总结的知识记忆会更加深刻,所以我决定将课堂交给学生让他们自主探究,然后同学间互相讨论,并根据图像归纳出对数函数的性质。另一方面,研究对数函数图像主要是研究底数a对图像的影响,以及底数互为倒数的两个函数图像间的关系。所以我将所研究的问题分为以下3组:第一组:和 第二组: 和 第三组: 和。并且我将全班学生每6人分为一组,由组长负责分配,每个学习小组要把这3组图都画出来,画完后,组内讨论各组图像间的关系或特点并归纳总结出来。这样做的好处是:1、可以大大节省画图时间,提高课堂效率;2、这样相当于全班每一位同学,都对对数函数的这三组图像有了初步的感性认识,3、培养了学生团结协作,归纳总结及交流的能力。讨论完后,让几个组的学生代表将本组所画图像及归纳总结的规律用实物投影一一展示,教师将学生归纳总结出的共性的规律提炼出来,并问学生:这是通过具体的对数函数总结出的规律。那么是否适用于一般的情况呢?这时就需要教师用多媒体演示来辅助教学了。我是用几何画板做了一个底数a变化时图像也随着变化的课件。通过底数a的变化,会出现不同的对数函数图像,学生会发现无论a怎样变化,图像的特点与由特殊函数总结出的规律一样,所以可以由特殊推出一般结论。还可以得出对数函数图像其实分为以下两类:a>1和0<a<1时。然后让学生观察图像,类比指数函数的性质,自己归纳出对数函数的性质并总结在学案上。
a>1 0<a<1 图 像 定义域 (0,+∞) 值域R 单调性在 上为增函数 在 上为减函数 奇偶性 非奇非偶函数
至此,对数函数的图像及性质就由教师引导,学生自主探究归纳总结出来。下面 就是应用性质来解题了。 (三)讲解例题,强化应用 在这一部分我安排了2道例题。 例1:求下列函数的定义域: 例2:比较下列各组数中的两个值的大小: 例1是对对数型函数定义域的考查。目的是让学生掌握形如:的函数求定义域只需f(x)>0即可。例2是比较两个对数值大小的问题。前两道题是直接利用函数单调性来比较,第3道题是为了让学生注意当底数不确定时,要有分类讨论的意识,第4道题是更上一层,底数真数都不相同时应如何处理,这四道题是层层深入,逐渐加深难度,通过这种变式教学可充分调动学生的解题积极性,调动他们的思维。 (四)归纳小结,巩固双基 归纳小结是巩固新知不可缺少的环节。本节课我让学生自主归纳,目的是培养学生的概括能力、语言表达能力,还能使学生将本节课的知识做简要的回顾。然后教师再将学生的发言做最后的小节。可以总结为: 在知识方面:(1)学习了对数函数的图像及其性质;(2)会应用对数函数的知识求定义域;(3)会利用对数函数单调性比较两个对数的大小。 思想方法方面:体会了类比、由特殊到一般、分类与整合、分类讨论的思想方法。 (五)布置作业,提高升华最后一个环节是布置作业,这是一节课提高升华的过程,也是检验学生是否掌握了本节课的知识和思想方法的关键。本节课我安排了两个作业。必做题和思考题,其中思考题是让学生思考既然本节课我们一直是通过指数函数来研究对数函数的,那么他们之间有怎样的关系呢? 通过以上各个环节, 不仅学生掌握了对数函数的定义与性质,还调动了学生自主探究与人合作的学习积极性,很好地完成了教学任务。
篇二:对数函数及其性质2
对数函数及其性质(第二课时)
天津市滨海新区汉沽五中 刘学军
一、教材与学情分析:
本节课为人教版(A版)普通高中课程标准实验教科书(必修1)第二章对数函数及其性质的第二课时,其主要包括三个内容,①同底数的两个对数比较大小(例8) ②对数函数的实际应用(例9).③反函数.例8中3个小题都是同底的对数函数比较大小,相互联系,逐个深入,利用对数函数单调性求解。对数函数的实际应用题部分,主要是让学生体会到对数在实际生活中有广泛的应用,培养学生数学应用意识,提高学生应用数学知识解决实际问题的能力.两个内容实际上统一在函数图象和性质的运用上,使得两个内容不是孤立的知识点,而是服务于对数函数的学习.对于反函数课标要求了解指数函数和对数函数是互为反函数,教学中我们将在反函数的教学中对两种函数图象和性质做一个简单梳理,通过学习进一步明确指、对数函数的关系,培养学生联系的观点,在揭示两种函数的关系中,加深对两种函数的认识.
反函数实际上是指、对数函数关系的整体呈现,具体的体现在函数性质的许多方面,教学中通过几何画板课件,直观展示这种数学关系下,函数性质的变化,有利于发展学生数形结合的思想.使学生感受到数与形的统一,内容与形式的和谐.
本节应用题教学中,通过对教材中例题和练习题的改编,使题目在实际生活的背景中体现更丰富的数学原理,更能引导学生综合运用对数函数的知识,解决问题,既激发了学生学数学、用数学的兴趣,也在解题训练上提升了一个台阶.
二、教学目标:
1.知识与技能
①进一步理解对数函数的图象和性质。
②能应用对数函数性质解决实际中的问题.
③了解反函数的概念,理解同底数的指数函数与对数函数互为反函数.在反函数的研究中加深对指数函数和对数函数性质的理解.
2.过程与方法
①在对数函数图象和性质的教学中,进一步领悟函数思想、等价转化、分类讨论、数形结合的思想.
②在反函数的研究过程中,学生通过观察和类比函数图象,体会两种函数性质上的联系. ③培养学生对应用数学知识解决实际问题的能力,在解题中把具体的实际问题化归为数学问题.
3.情感、态度、价值观
①培养学生严谨的科学态度. 启发学生用所获得的结果去解释实际现象.
②用联系的观点分析问题,认识事物之间的相互转化.
三、重点、难点:
重点:对数函数性质的深化及其应用.
难点:1.对反函数概念的理解,并从中理解指、对数函数图象和性质的关系.
2.如何把具体的实际问题化归为数学问题,利用对数函数模型进行求解.
四、教法:启发引导,探索发现(多媒体辅助教学).
五、学法与教具:
学法:通过图象,理解对数函数与指数函数的关系. 强调要有数形结合、分类讨论、转化的数学思想
教具:多媒体、几何画板
六、教学过程:
(一).复习铺垫导入新课
与学生共同回忆对数函数,且的图象和性质,
>1
0<<1
图
象
性
质
(1)定义域(0,+∞);
(2)值域R;
(3)过点(1,0),即当=1,=0;
(4)在(0,+∞)上是增函数
在(0,+∞)上是减函数
本节课我们继续研究对数函数的性质,并应用这些知识解决一些问题,引入新课,板书课题: 对数函数及其性质(第二课时)
(二).例题讲解,强化性质
教师课件展示两个例题
例8 比较下列各组数中两个值的大小:
(1) , (2) ,
(3),
与学生共同完成,教师板书,强化分类讨论的数学思想。
设计意图:例8以渐进式的方式呈现三个题目,(1)(2)注意构造函数应用单调性,(3)在学生认知冲突之后,用分类讨论的思想解题。
例9 溶液的酸碱度是通过pH值来刻画的,pH值的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是mol/L.
(1)已知纯净水中氢离子的浓度为[H+]=10-7mol/L,计算纯净水的pH值.
(2)根据联合国卫生组织的标准,当人体的血液PH值接近7.45的时候,我们可以称之为偏碱性体质,这种体制是最健康的.而中国广西巴马的水不仅矿物质非常丰富,水质PH值为
7.5成弱碱性.和人体血液的PH值7.5基本吻合.求巴马水中氢离子的浓度. ()
(3)根据对数函数性质及上述pH值的计算公式,说明溶液的酸碱度与溶液中氢离子的浓度之间的变化关系.
设计意图:例9主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题.把课本(2)改为(1),增加(2),对比两组数据,体会溶液的酸碱度与溶液中氢离子的浓度之
间的变化关系.可以从的单调性去说明,启发学生用所获得的结果去解释实际现象.本题要求学生独立将实际问题转化为数学问题;在练习本上独立解决.教师指正,之后通过对“对数函数”应用(如航天技术、考古学、生物学等领域)的大致介绍,使学生感受数学的应用价值.强调数学应用思想
(II)学生练习:练习一
1.已知,,,,则( )
A. B. C. D.
2.比较大小:
(1) ;
(2) .(写出推理过程)
3.声强级L(单位:dB)由公式: 给出,其中I为声强(单位:W/m2 ).
(1)平时常人交谈时的声强约为10-6W/m2,求其声强级.
(2)一般正常人听觉能忍受的最高声强为1W/m2 ,能听到的最低声强为10-12W/m2.求人听觉的声强级范围.
设计意图:前两题均是利用了对数函数的图象和性质,但题目编制中注意引导学生转化成例8的问题模型来解决,在强化函数性质同时,培养学生转化与化归的数学思想.第3题本题主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题.(1)直接求函数值,
(2)强化对数函数单调性应用,培养学生转化的数学思想.培养学生严谨的学习习惯.
(三).深入研究,拓展延伸
(I)教师屏幕展示指数函数和对数函数的简单性质,
指数函数
对数函数
定义域
值域
定点
并组织学生讨论:指、对数函数有何关系:性质中的值是互换的。
教师通过具体的函数引导学生从解析中认识反函数的意义,
(II)以反函数提出的问题为载体,具体研究两种函数性质的一些统一性。
既然指、对数函数中的的值是互换的。那么他又是如何将这样的特点反映在函数的性质上呢?结合图象以性质中值的关系猜想对数函数的相关性质,并作进一步的归纳:
学生猜想
几何画板演示,直观感知操作确认,并把问题推广到一般,归纳性质:同正异负
教学中关注数形结合的思想,尤其是数形结合具体体现形式,培养学生主动应用数形结合思想解决问题的能力。
(四)课堂练习二
1.判断下列数值的正负:
0; 0;0.
2. 设,则( )
A a<b<cB a<c<b C b<c<a D b<a<c
研究与探讨(课下完成)
3.比较大小: ; .
(五)小结所学,形成系统:带领学生从知识与方法两个方面进行回顾与总结,
指出:在知识方面,本节知道同底的指数函数和对数函数是互为反函数,又通过反函数类比研究了对数函数的一些性质。在数学思想方法上体会到分类讨论、数形结合、转化与化归在数学解题中的应用,也应用知识解决相关问题的过程中,认识到了对数函数在实际生活中有广泛的应用.实际上对数函数还广泛应用于航天技术、考古学、生物学等领域.
(六)作业:
P74—P75 习题2.2 A组9题;12题,
阅读P76探究与发现 “互为反函数的两个函数图象之间的关系”
(七)板书设计:
第七届中小学双优课赛教学设计
对数函数及其性质
(第二课时)
执教教师:刘学军
教师单位:天津市滨海新区汉沽五中
篇三:对数函数及其性质
《对数函数》
——教学设计
姓名:哈进林
学号:40905008
专业:数学与应用数学
学院:数学与信息科学学院
目 录
前言……………………………………………………………………… 1
一、 教材分析 ………………………………………………………… 1
二、 学习对象分析 ……………………………………………………2
1. 学习对象 ……………………………………………………… 2
2. 知识基础……………………………………………………… 2
3. 能力基础……………………………………………………… 2
4. 学习风格分析………………………………………………… 3
三、 学习目标 ………………………………………………………… 4
1. 知识目标 ……………………………………………………… 4
2. 能力目标 ……………………………………………………… 4
3. 情感态度价值观目标 ………………………………………4
四、 学习重、难点 ……………………………………………………4
五、 学习研究目标 ……………………………………………………5
学习流程 ……………………………………………… 5
六、 学习准备 …………………………………………………………5
七、 学习程序设计 …………………………………………………… 5
(一)学习流程图………………………………………………… 5
课时学习流程图………………………………… 5
(二)详细学习程序 …………………………………………… 8
《指数函数的图像及性质》学习设计
前言:
随着时代的快速发展,现代教育技术在教育领域中的应用,不仅为建立新型教育方式和教育模式提供了新思维、新方式,而且也为学生课堂学习营造了发现探索的和谐环境,提供了便利条件,为教育的信息化提供技术支持和智力支持,有助于促进教育学的改革。在现代教育信息技术提供的丰富学习资源中,学生通过检索、构思,可以有效地将教材中的有关内容进行密切整合,形成自己的观点,获得自己的认知,从而发展自己的个性,培养自身的创造性思维,实现“学会学习”的目标。因此,现代教育信息技术也为实现学生的素质教育提供了良好途径。基于上述原因,本人在学习中尝试将高中人教B版第二章基本初等函数第一课时:2.2.2、《对数函数及其性质》。
这一内容运用新课改的理念指导教学,制定出信息化教学设计。
新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。因此,设想将相关内容融会贯通进行学习,既避免了学习的重复和浪费,又能为学生构建一个完
整和高效能的知识网络。
一、教材分析
本节课教材是人教B版第二章基本初等函数第一课时:2.2.2、《对数函数及其性质》。 本节课是学生在学习了函数的定义、图象和性质,掌握了研究函数的一般思路,并将熟悉了指数函数的图像及性质,对数函数是继指数函数之后的又一重要的基本初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
学生在掌握了函数的一般性质和简单的对数运算的基础上,进一步研究对数函数以及对数函数的图像和性质,既可以对高中阶段系统研究函数类的函数知识(如定义域,值域,单调性等)进一步巩固和深化对函数的概念等知识,融会贯通掌握前面函数的基本性质,使学生得到较系统的函数知识和研究函数的方法,又可以为后面进一步学习函数打下坚实的概念和图象基础,进一步培养函数的应用意识。 教材将《对数函数》的知识与我们的日常生产、生活和科学研究紧密的联系起来,尤其体现在考古中出土文物、古遗址上死亡生物体的残留物的年代测算等方面,因此教材体现出学习这部分知识有着广泛的现实意义。教材让学生认识到数学的应用价值,了解到数学与现实生活息息相关,从而激发学生学习数学的兴趣。教材的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
《对数函数》这部分知识和《指数函数》一样较抽象,与指数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定了基础。所以,学生由过去被动接受转变为主动参与,由被动学习转变为主动发现探究学习,更好地理解对数函数的图象与性质。
二、学习对象分析
1.学习对象
本课是高一学生刚步入高中学习的《对数函数》内容,经过之前的学习,学生已经初步掌握了研究函数的一般思路,有一定的分析和总结归纳能力,但学生对抽象概念的理解可能还有困难,再加上本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求。另外,学生在探究问题的能力以及合作交流等方面发展不够均衡,所以学生学习起来仍有一定难度。
2.知识基础
(1)学生已经学习了函数的概念、图象、性质,以及分数指数幂的运算等,掌握了研究函数的一般思路。
(2)学生初中对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,并且学习了指数函数的知识,对函数有了一点了解,能够从变化的角度认识函数且转化到从集合与对应的观点来认识函数。
3.能力基础
(1)学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力,由观察到抽象的数学活动过程已有一定体会,已初步了解了数形结合的思想;
(2)学生对采用“描点法”描绘函数图象的方法和对《指数函数》的图像和性质已基本掌握,能够为研究《对数函数》的图象和性质做好准备。
4.学习风格分析
(1)对新鲜事物有强烈的好奇心,并喜欢积极去探索新事物,发现新现象。学生思维的敏捷性、灵活性、深刻性、独创性和批判性明显增强。
(2)喜欢和别人比较,有强烈的争强好胜心和进取心,富有激情。
(3)能够认识到数学的趣味性,想得到老师好评,对学习产生浓厚的兴趣。
(4)学生想要利用网络资源进行学习,去了解更多的新知识,这是我们信息化教学的后盾。
三、学习目标
新课标指出学生学习目标应包括知识目标、能力目标和情感态度价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程也就是成为学习的主人,形成正确价值观的过程。以此为指导我制定了以下的教学目标:
1.知识目标
(1)通过实际问题了解对数函数的实际背景,掌握对数函数的概念和意义,能够利用列表描点法画出对数函数的图象,理解对数函数的定义。
(2)通过图象探索并理解和掌握对数函数的性质及其简单应用,体会特殊到一般数学讨论的方法和数形结合的思想,并结合指数函数和对数函数理解护卫反函数的关系,使学生获得研究函数的规律和方法。
(3)通过与指数函数图像和性质的类比对照,研究对数函数的图像和性质。
2.能力目标
(1)通过观察图象,分析、归纳、总结、自主建构对数函数的性质,培养学生观察发现、抽象、类比、猜测、归纳、解决问题等严谨的思维能力和科学正确的计算能力,通过对对数函数的概念、图象、性质的学习,培养学生实际应用函数的能力。
(2)借助《几何画板》软件画出具体对数函数的图象,探索对数函数的图象和性质,渗透数形结合的思想方法和分类讨论思想以及从特殊到一般等学习数学的方法,增强学生识图用图的能力,并且对照指数函数的图像和性质,深层次的了解对数函数。
(3)通过网上冲浪,学生联系生活实例,让学生了解数学来自生活,数学又服务于生活的哲理,培养学生观察问题、分析问题的能力。
3.情感态度与价值观目标
(1)学生通过亲自利用《几何画板》实践操作,使学生了解对数函数和的图像,为学习对数函数的性质做好铺垫,使问题逐步由具体到抽象, 由特殊到一般,符合学生的认知规律,增强学习对数函数的积极性和自信心,从
《对数函数及其性质课件》出自:百味书屋
链接地址:http://www.850500.com/news/65250.html
转载请保留,谢谢! |
|